Sains Malaysiana 54(10)(2025):
2525-2537
http://doi.org/10.17576/jsm-2025-5410-15
Geochemical
and Mineralogical Characterization of Sangiran Mud Vulcano: Insights into Rare
Earth Element (REE) Enrichment
(Pencirian
Geokimia dan Mineralogi Gunung Berapi Lumpur Sangiran: Pandangan terhadap
Pengayaan Unsur Nadir Bumi (REE))
CAHYO AJI HAPSORO1,*, KHARISMA ASMARANI BUDIONO1, MOCHAMAD KHOIRUL RIFAI1, ALPAN IBRAHIM1, MARIYANTO MARIYANTO2,6, ELEONORA AGUSTINE3, RINA DWI INDRIANA4 & MIMIN IRYANTI5
1Department
of Physics, Faculty of Mathematics and Natural Sciences, State University of
Malang, Jl. Semarang 5, Malang, 65145, Indonesia
2Department
of Geophysical Engineering, Faculty of Civil, Planning, and Geo-Engineering,
Institut Teknologi Sepuluh Nopember, Surabaya, 60111, Indonesia
3Department
of Geophysics, Faculty of Mathematics and Natural Science, Padjajaran
University, Jl. Ir. Soekarno KM 21, Sumedang, 45363, Indonesia
4Department
of Physics, Faculty of Science and Mathematics, Diponegoro University, Jl.
Prof. Soedarto, SH, Semarang, 1269, Indonesia
5Department
of Educational Physics, Faculty of Education of Mathematics and Natural
Science, Indonesia University of Education, Jl. Dr. Setiabudhi 229, Bandung,
40154, Indonesia
6Faculty
of Mining and Petroleum Engineering, Institut Teknologi Bandung, Jl. Ganesha
10, Bandung,
40132, Indonesia
Diserahkan:
20 Januari 2025/Diterima: 11 Ogos 2025
Abstract
The Sangiran Mud Volcano (SMV), an inactive mud volcano
located in Central Java, Indonesia, exhibits a unique geological framework with
promising potential for Rare-Earth Element (REE) mineralization. This study
explores the geochemical properties and REE mineral content of SMV through
comprehensive analytical methods, including magnetic susceptibility
measurements for magnetic property analysis, X-Ray Fluorescence (XRF) for
quantitative elemental analysis, X-Ray Diffraction (XRD) X’Pert PRO PANalytical
plays a role in identifying the crystalline phases of REE-related minerals,
Scanning Electron Microscopy-Energy Dispersive X-Ray Energy Dispersive
Spectroscopy (SEM-EDS) Hitachi Flexsem 1000 provides microscopic
characterization of morphology and elemental composition, and Inductively
Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) is used to determine REE
concentrations with high precision. The findings showed that SMV samples mostly
consist of hematite and cerium, with average concentrations of 83.16% and
16.83%, respectively. Further geochemical analysis identified significant
concentrations of REEs, particularly lanthanum (La) and cerium (Ce), with La
showing the highest average concentration at 44.39 ppm, followed by Ce at 37.96
ppm. Additionally, XRF analysis showed that the oxide composition in the
samples was dominated by SiO2 (55.36%), followed by Fe2O3 (17.18%), Al2O3 (11.11%), CaO (15.73%),
TiO2 (1.02%), K2O (0.8%), and ZrO2 (0.048%). XRD analysis
showed the highest potential REE content in samples T1 and T7, with silicon
iron cerium deuteride concentrations of 19.8% and 19.4%, respectively. SEM-EDS
spectra showed that carbon (C) and oxygen (O) are the main elements, while lower
concentrations of Al, Si, Fe, K, and Ca were observed, and trace elements,
including Mg and Na, were also detected in small amounts, and ICP-OES analysis
detected other REEs, including dysprosium (Dy), europium (Eu), gadolinium (Gd),
holmium (Ho), neodymium (Nd), praseodymium (Pr), samarium (Sm), terbium (Tb),
yttrium (Y), and scandium (Sc). This decision highlights the potential for REE
mineralization in the SMV. Further exploration and characterization of this
region could enhance understanding of REE enrichment processes in mud volcano
systems and have significant implications for future resource development.
Keywords: Geochemical analysis; hematite and cerium; mineralization potential; Rare
Earth Elements (REE); Sangiran Mud Volcano (SMV)
Abstrak
Gunung Berapi Lumpur Sangiran (SMV), gunung berapi lumpur
tidak aktif yang terletak di Jawa Tengah, Indonesia, mempamerkan rangka kerja
geologi yang tersendiri dengan potensi untuk mineralisasi Unsur Nadir Bumi
(REE). Penyelidikan ini meneroka sifat geokimia dan kandungan mineral REE SMV
melalui kaedah analisis yang komprehensif, termasuk pengukuran kerentanan
magnet digunakan untuk analisis sifat magnetik material, Pendaflour Sinar-X
(XRF) digunakan untuk analisis unsur kuantitatif, Belauan Sinar-X (XRD) X’Pert
PRO PANalytical memainkan peranan dalam mengenal pasti fasa kristal mineral
berkaitan REE, Mikroskopi Elektron Imbasan-Serakan Tenaga Sinar-x Spektroskopi
Serakan Tenaga (SEM-EDS) Hitachi Flexsem 1000 menyediakan pencirian
mikroskopik morfologi dan komposisi unsur dan Spektrometri Pemancaran
Plasma-Optik Berganding Secara Induktif digunakan untuk menentukan kepekatan
REE dengan ketepatan tinggi. Penemuan menunjukkan bahawa sampel SMV
kebanyakannya terdiri daripada hematit dan serium dengan kepekatan purata
masing-masing 83.16% dan 16.83%. Analisis geokimia selanjutnya mengenal pasti
kepekatan ketara REE, khususnya lanthanum (La) dan serium (Ce) dengan La
menunjukkan kepekatan purata tertinggi pada 44.39 ppm diikuti oleh Ce pada
37.96 ppm. Selain itu, analisis XRF menunjukkan sebatian oksida dalam sampel
didominasi oleh SiO2 (55.36%), diikuti oleh Fe2O3 (17.18%), Al2O3 (11.11%), CaO (15.73%),
TiO2 (1.02%), K2O (0.8%) dan ZrO2 (0.048%), analisis XRD
menunjukkan kandungan REE berpotensi tertinggi dalam sampel T1 dan T7 dengan
kepekatan deuteride silikon besi serium masing-masing sebanyak 19.8% dan 19.4%,
spektrum SEM-EDS mendedahkan bahawa karbon (C) dan oksigen (O) adalah unsur
utama, manakala kepekatan Al, Si, Fe, K dan Ca yang lebih rendah diperhatikan
sedangkan unsur kecil, termasuk Mg dan Na juga dikesan dalam jumlah surih dan
analisis ICP-OES mengesan REE lain, termasuk dysprosium (Dy), europium (Eu),
gadolinium (Gd), holmium (Ho), neodymium (Nd), praseodymium (Pr), samarium
(Sm), terbium (Tb), yttrium (Y) dan skandium (Sc). Keputusan ini menggariskan
potensi untuk mineralisasi REE dalam SMV. Penerokaan dan pencirian yang lebih
terperinci bagi rantau ini boleh meningkatkan pemahaman proses pengayaan REE
dalam sistem gunung berapi lumpur dan mempunyai implikasi yang ketara untuk
pembangunan sumber masa hadapan.
Kata
kunci: Analisis geokimia; Gunung Berapi Lumpur Sangiran (SMV); hematit
dan serium; potensi mineralisasi; Unsur Nadi Bumi (REE)
RUJUKAN
Alibert,
C. 2016. Rare earth elements in Hamersley BIF minerals. Geochimica et
Cosmochimica Acta 184: 311-328. https://doi.org/10.1016/j.gca.2016.03.026
Blengini,
G.A., Nuss, P., Dewulf, J., Nita, V., Peirò, L.T., Vidal-Legaz, B., Latunussa,
C., Mancini, L., Blagoeva, D., Pennington, D., Pellegrini, M., Van Maercke, A.,
Solar, S., Grohol, M. & Ciupagea, C. 2017. EU methodology for critical raw
materials assessment: Policy needs and proposed solutions for incremental
improvements. Resources Policy 53: 12-19. https://doi.org/10.1016/j.resourpol.2017.05.008
Bronto,
S., Asmoro, P. & Efendi, M. 2017. Gunung api lumpur di daerah Cengklik dan
sekitarnya, Kabupaten Boyolali Provinsi Jawa Tengah. Jurnal Geologi dan
Sumberdaya Mineral 18(3): 147-159. https://doi.org/10.33332/jgsm.geologi.v18i3.269
Casadei,
M., Ren, X., Rinke, P., Rubio, A. & Scheffler, M. 2012. Density-functional
theory for 𝑓-electron systems: The 𝛼−𝛾 phase
transition in cerium. Physical Review Letters 109(14): 146402.
https://doi.org/10.1103/PhysRevLett.109.146402
Courtney-Davies,
L., Ciobanu, C.L., Verdugo-Ihl, M.R., Dmitrijeva, M., Cook, N.J., Ehrig, K.
& Wade, B.P. 2019. Hematite geochemistry and geochronology resolve genetic
and temporal links among iron-oxide copper gold systems, Olympic Dam district,
South Australia. Precambrian Research 335: 105480.
https://doi.org/10.1016/j.precamres.2019.105480
Dahle,
J. & Arai, Y. 2015. Environmental geochemistry of cerium: Applications and
toxicology of cerium oxide nanoparticles. International Journal of Environmental
Research and Public Health 12(2): 1253-1278.
https://doi.org/10.3390/ijerph120201253
Dearing,
J.A., Dann, R.J.L., Hay, K., Lees, J.A., Loveland, P.J., Maher, B.A. &
O’Grady, K. 1996. Frequency-dependent susceptibility measurements of environmental
materials. Geophysical Journal International 124(1): 228-240.
https://doi.org/10.1111/j.1365-246X.1996.tb06366.x
Dushyantha,
N., Batapola, N., Ilankoon, I.M.S.K., Rohitha, S., Premasiri, R., Abeysinghe,
B., Ratnayake, N. & Dissanayake, K. 2020. The story of rare earth elements
(REEs): Occurrences, global distribution, genesis, geology, mineralogy and
global production. Ore Geology Reviews 122: 103521.
https://doi.org/10.1016/j.oregeorev.2020.103521
El-Taher,
A., Badawy, W.M., Khater, A.E.M. & Madkour, H.A. 2019. Distribution
patterns of natural radionuclides and rare earth elements in marine sediments
from the Red Sea, Egypt. Applied Radiation and Isotopes 151: 171-181.
https://doi.org/10.1016/j.apradiso.2019.06.001
Galos,
K., Lewicka, E., Burkowicz, A., Guzik, K., Kot-Niewiadomska, A., Kamyk, J.
& Szlugaj, J. 2021. Approach to identification and classification of the
key, strategic and critical minerals important for the mineral security of
Poland. Resources Policy 70: 101900. https://doi.org/10.1016/j.resourpol.2020.101900.
Gwenzi,
W., Mangori, L., Danha, C., Chaukura, N., Dunjana, N. & Sanganyado, E.
2018. Sources, behaviour, and environmental and human health risks of
high-technology rare earth elements as emerging contaminants. Science of The
Total Environment 636: 299-313.
https://doi.org/10.1016/j.scitotenv.2018.04.235
Hapsoro,
C.A., Mariyanto, M., Agustine, E., Iryanti, M., Indriana, R.D., Rifai, M.K.,
Ibrahim, A. & Budiono, K.A. 2023. Identification of sediment formation
based on magnetic content and element composition of mud volcano in Sangiran
sediment using VSM and X-ray fluorescence. JPSE (Journal of Physical Science
and Engineering) 8(1): 9. https://doi.org/10.17977/um024v8il2023p009
Hidayat,
W. & Novianto, A. 2020. Potential analysis of geological disasters ‘mud
volcano’ at Boyolali and its surrounding areas based on geomagnetic methods. AIP
Conference Proceedings 2251: 040006.
https://doi.org/10.1063/5.0016349
Indriana,
R.D., Mariyanto, M., Agustin, E., Iryanti, M., Hapsoro, C.A., Koesuma, S. &
Ashadi, A.L. 2024. Gravity interpretation of mud volcano based on satellite
data (study case Kuwu and Cangkring Mud Volcano). Indonesian Journal of
Applied Physics 14(1): 165. https://doi.org/10.13057/ijap.v14i1.84933
Indriana,
R.D., Saputra, H., Mariyanto, M., Agustin, E., Iryanti, M. & Hapsoro, C.A.
2023. Rare earth element characterization of Bledug Kuwu Mud Volcano, Central
Java, Indonesia, based on geochemical analyzes (susceptibility, XRF, XRD,
SEM-EDS and ICP-EOS). Sains Malaysiana 52(9): 2529-2543.
https://doi.org/10.17576/jsm-2023-5209-05
Isnaniawardhani,
V., Muhamadsyah, F. & Sudrajat, A. 2018. Foraminifera assemblages as a
marker of mud eruption source in Ciuyah, Ciniru - Kuningan, West Java. RISET
Geologi dan Pertambangan 28(2): 239. https://doi.org/10.14203/risetgeotam2018.v28.509
Iwamori,
H., Nakamura, H., Chang, Q., Morikawa, N. & Haraguchi, S. 2020.
Multivariate statistical analyses of rare earth element compositions of spring
waters from the Arima and Kii areas, Southwest Japan. Geochemical Journal 54(4): 165-182. https://doi.org/10.2343/geochemj.2.0583
Kumar,
V., Sharma, A., Kumar, R., Bhardwaj, R., Thukral, A.K. & Rodrigo-Comino, J.
2020. Assessment of heavy-metal pollution in three different Indian water
bodies by combination of multivariate analysis and water pollution indices. Human
and Ecological Risk Assessment: An International Journal 26(1): 1-16.
https://doi.org/10.1080/10807039.2018.1497946
Leventeli,
Y. & Yalcin, F. 2021. Data analysis of heavy metal content in riverwater:
Multivariate statistical analysis and inequality expressions. Journal of
Inequalities and Applications 2021(1): 14.
https://doi.org/10.1186/s13660-021-02549-3
Maestrelli,
D., Bonini, M. & Sani, F. 2019. Linking structures with the genesis and
activity of mud volcanoes: Examples from Emilia and Marche (Northern Apennines,
Italy). International Journal of Earth Sciences 108(5): 1683-1703.
https://doi.org/10.1007/s00531-019-01730-w
Mauri,
G., Husein, A., Mazzini, A., Irawan, D., Sohrabi, R., Hadi, S., Prasetyo, H.
& Miller, S.A. 2018a. Insights on the structure of Lusi mud edifice from
land gravity data. Marine and Petroleum Geology 90: 104-115.
https://doi.org/10.1016/j.marpetgeo.2017.05.041
Mauri,
G., Husein, A., Mazzini, A., Karyono, K., Obermann, A., Bertrand, G., Lupi, M.,
Prasetyo, H., Hadi, S. & Miller, S.A. 2018b. Constraints on density changes
in the funnel-shaped caldera inferred from gravity monitoring of the Lusi mud
eruption. Marine and Petroleum Geology 90: 91-103. https://doi.org/10.1016/j.marpetgeo.2017.06.030
Mazzini,
A. & Etiope, G. 2017. Mud volcanism: An updated review. Earth-Science
Reviews 168: 81-112. https://doi.org/10.1016/j.earscirev.2017.03.001
Mazzini,
A., Sciarra, A., Lupi, M., Ascough, P., Akhmanov, G., Karyono, K. & Husein,
A. 2023. Deep fluids migration and submarine emersion of the Kalang Anyar Mud
Volcano (Java, Indonesia): A multidisciplinary study. Marine and Petroleum
Geology 148: 105970. https://doi.org/10.1016/j.marpetgeo.2022.105970
Novianto,
Ardian, Sutanto, Suharsono, Prasetyadi, C. & W. Hidayat. 2022. Mud volcano:
Revealing the stratigraphy of Kendeng Basin, Indonesia. Open Journal of
Yangtze Oil and Gas 7(1): 48-64. https://doi.org/10.4236/ojogas.2022.71004
Samankassou,
Elias, Mazzini, A., Chiaradia, M., Spezzaferri, S., Moscariello, A. & Do
Couto, D. 2018. Origin and age of carbonate clasts from the Lusi Eruption,
Java, Indonesia. Marine and Petroleum Geology 90: 138-148. https://doi.org/10.1016/j.marpetgeo.2017.11.012
*Pengarang
untuk surat-menyurat; email: cahyo.ajihapsoro.fmipa@um.ac.id